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Abstract. The response of a quantum system to a time-dependent periodic external field is
investigated in connection with the dynamical symmetry breaking and level dynamics of the
adiabatic states of the system. The main results are as follows. (A) When the periodic external
field preserves the dynamical symmetry of the system, its response is like that of elastic matter.
(B) When the periodic external field breaks the dynamical symmetry, several cases may occur:
(a) in the adiabatic limit, the system still responds elastically; (b) if the initial state is an eigenstate
of the evolution operatot/(T) for one periodT of the external field, the system evolves in

time cyclically and responds quasi-elastically; (c) if the initial state is not an eigenstate of the
evolution operatot/ (T'), the system evolves in time non-cyclically and responds non-elastically.
The detailed non-elastic behaviour depends on the statistical nature of the adiabatic eigenstates
of the system. If the adiabatic spectrum is chaotic, the non-elastic response is expected to be
strongly dissipative. The avoided level crossings of the adiabatic eigenstates play a crucial role
in both producing chaoticity of the adiabatic levels and causing dissipation of the non-elastic
response. The non-elastic role played by the adiabatic progressive phase is also addressed.
Computer experiments are performed for the su(2) dynamical model to illustrate the above
general results.

1. Introduction

The response of a quantum system to a time-dependent external field is of general interest
in many branches of physics, such as solid state physics, atomic and molecular physics, and
nuclear physics. A large variety of interesting phenomena have been found in this context.
Generally, as a time-dependent external field acts on a quantum system, its response may
fall into one of several categories such as elastic, viscous or elastoplastic [1]. In nuclear
physics, as two heavy ions are colliding, a time-dependent mean field results. The dissipative
behaviour of the two nuclei depends on both the time-dependent mean field and the two-body
residual interactions [2]. Intuitively, both the time-dependent mean field and the residual
interactions will destroy the good quantum numbers of individual nucleons and may drive
them to chaotic motion. As the nucleonic motion changes from regular to irregular modes,
energy and angular momentum of the collective motion of the nucleus will dissipate into
single-particle motion. In this paper, we shall use group theoretical methods to study the
mechanism that governs the above diverse phenomena by an investigation of a quantum
system which possesses a dynamical group, i.e. whose Hamiltonian is a function of certain
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Lie group generators. In what follows, we shall show that the response of a quantum system
is closely related to the preserving or breaking of the dynamical symmetry of the system
due to the external field. For simplicity, we assume that the time-dependent external field
is periodic.

2. General formalism

Consider a quantum system whose dynamics is dictated by a time- periodic Hamiltonian,
H(t) = H(x(1)) (1)

where « is a periodic function ofr with frequencyw. The time dependence of the
Hamiltonian can be induced by a time-periodic external field,

H(1) = Ho+ V(a(2)). 2

Suppose the dynamical group of the unperturbed Hamiltollgris G with {X,} as its
generators an¢iC, C;} as a complete set of commuting operators, usually chosen according
to some group chain [3,4]. The dynamical symmetry [5(Bpf Hy means thatHy is a
function of {C, C;},

Ho = Ho(X,) = Ho(C, C)) 3)
whereC and C; are the Casimir operators of some group chain

G(C) D Gi(Cy) 4)
with the property

[C.Ci]=0 [Ci, Cj]1 =0. ®)

If G is also the dynamical group df(¢), then H(z) can be represented as function of the
group generatory,,

H(t) = H(X,, a(t)) = Ho(C, C;) + V(X,, «(?)). (6)
The time-periodic perturbatioW () may either preserve or destroy the dynamical symmetry
of the system. Assume, andn = {ni,ny,...,n;} are eigenstates and eigenvalues of
{C, C;}. From equation (3) it is evident tha, are also eigenstates &f;, namely

H0¢n =€ (0)¢n (7)
For the time evolution of the system by the time-dependentiiihger equation,

10y (1)/dr = H®)y (1) (8)
we consider two cases: (AY () preserves the dynamical symmetry £, i.e. V()
preserves the quantum numbérs, no, ..., n;}; (B) V() breaks the dynamical symmetry
of Hy, i.e. it destroys the quantum numbérg, no, ..., n;}.

(A) V(t) preserves the dynamical symmetry

We first prove a theorem which underlies the discussion of this section.
(1) Theorem.The necessary and sufficient condition 1o() to preserve the dynamical
symmetry of Hy is that H (r) assumes the following form,

H(t) = H(C, G, a(1)) = Ho(C, C;) + V(C, Ci, a(1)) ©)

namelyV (¢) is also a function ofC, C;)} only.
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Proof. If H = H(C, C;, «(t)), then from equation (5) we have
[H®),C]=0 [H(t),Ci]=0 (10)

which means thatC, C;} are conserved operators and their quantum numfagrs,, ..n;}
are constant during the time evolution. Converselydf C;} are conserved undét (¢),
then{C, C;} and H(t) commute,

[H(),C]=0 [H(1),Ci]=0 (11)

henceH () must be a function ofC, C;}.

(2) Dynamical behaviour of the system
(i) Adiabatic eigensolutiong, of H(z),

H(C, Ci, a(1))pp = €n(@)Pn (12)

are also eigenstates ¢€, C;}, they form an irreducible representation basis of the group
G,

{C, Ci}p, = (ni}¢n. (13)

Thus ¢, are algebraic-geometric objects of the gratipand independent of the parameter
a!

Lo
o

while the energies, («) are dynamical quantities depending @n
(i) Time-dependent behaviour. Expand the general solution of the time- dependent
Schibdinger equation in terms af,,

=0 (14)

V()= bu(t)gn. (15)
Inserting equation (15) into equation (8), one has together with equation (12)
.db,
= 1
=y = bren(@(®) (16)
and
t
b,(t) = b,(0) exp[ —i / €,(1) dti|. a7
0

The energy of the system is

E@®) = (OIHOY®) = ba(0) ey (a(t)) = E(a(1)) (18)

which means that the system responds elastically to the externalVfig)Jd Furthermore,
if v(0) = ¢,, we have a stationary solution,

l/f(t)=¢nexp<—i/0 En(f)df> =¢nexp<—i/0 (w(f)lH(T)Ilﬁ(f))dT) (19)

which means that the system possesses only a dynamical phase, but no Berry phase [7].
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(B) V(t) breaks the dynamical symmetry

Then, according to the above theorevh) is not a function of{C, C;} but a function of
{(X,},
V() = V(X,,a) # V(C, Ci, a(t)). (20)

Let V(¢) be periodic with the period” = 27/w, V(t + T) = V(¢). Without loss of
generality, we assume

V(T) = V(0) = 0. (21)
The eigensolutions offy and H(x(z)) are

Ho¢n = €,(0)¢n (Bnldm) = Sum (22)
and

H(a)ép(a) = Ep(a)§p (@) (6pl&q) = 8pq- (23)

Equation (8) has the formal solution

v (@) =U@y(0) (24)
where the time evolution operator is defined as usual,

U(t) = f”exp(—i/otH(t)dt). (25)

Consider the time evolution operatdi(T) for one periodT" of the external fieldV (¢). Its
eigenvalue equation is

U(T)ni(T) = exp(—i0x(T))ni(T) (26)
where6, (T) is Floguet's index, and the-period solution reads
v (nT) = [U(T)]"¢(0). (27)

The dynamical evolution can be divided into two major categories: adiabatic evolution and
non-adiabatic evolution.
(1) Adiabatic evolution.If one expands

Y =) a0k (@) (28)
P

the equation of motion fow,, is
d
do

d d
i _ E(a(t)ay(t) — |d—(: Xq:<g,,

u s> . (29)

In the adiabatic limit Wher% — 0, the off-diagonal part in equation (29) can be neglected
so that

d
ot

. da,, .
|E = Ep([)ap(t) - <§p(t) l

which has the adiabatic solution
ap(t) = exD(—i@p(l))ap(O) Qp(t) = /(; <Ep(T) - <'§p

The energy is
E@t)=WOIHOIY @) = Z la, O)PE,(a(t)) = E(a(t)) (32)
V4

Ep(t)> ap(t) (30)

i% gp>> dr. (31)
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which indicates that in adiabatic evolution, the system responds elastically as in case (A),
equation (18). The adiabatic evolution is of course related to the adiabatic Berry phase [7].
(2) Non-adiabatic evolution [8].
(i) Cyclic (or recurrent) evolution requires the initial state to be an eigenstat& Bbj,

¥ (0) = ny. (33)
This leads, according to equations (26), (27), to the recurrent solution
Y (nT) = exp(—in6 (T))ny. (34)

The cyclic evolution is related to the non-adiabatic Berry phase [8]. For one period the
dynamical phase is

o) = | OO 0) & (35)
and the Berry phase is

0 (T) = —(O(T) — 6 (T)). (36)
The energy is, by virtue of equations (21), (34),

E(nT) = (y(nT)|HnD)|Y(nT)) = (nc|Holnk) = E(0). (37)

This indicates that in the cyclic evolution, the energy of the system changes in time within

the periodTl” and at each cycle the energy returns to its initial value. SEgg is in general

not a function ofx, the response of the system is not really elastic. However, in view of the

energy restoration after each period, one can refer to the system’s response as quasi-elastic.
(i) For non-cyclic evolution, the initial state is not an eigenstatd/gf"),

¥ (0) # me (38)
which leads to a non-cyclic (non-recurrent) solution. Let
YO =Y Cn (39)
k
then
Y(T) = Dpm (40)

where from equations (26), (27)
ng = Z CIEO)dkm exP(—ian) Nk = Z dkm¢m' (41)
k m

The energy of the system is
E(nT) = (Y (T)|HnT)|Yy(nT)) = Z Pon (nT)é€, (0) (42)

where the distribution probability,, is

Py, (nT) = |D . (43)
If the system is initially in the ground state &f;, namely

¥ (0) = ¢o with energyep(0), (44)
then the system will absorb energy from the external field because

EnT) > €(0). (45)
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To study the non-elastic behaviour of the system, one has to make a clear-cut separation
of the non-elastic effect from the elastic one. To this end we use the instantaneous adiabatic
eigenstate$, as a working basis. Let us expand the time-dependent solytionin terms
of this basis,

Yno (1) =) Aung (1) €XR(—i6, (1))E, (@ (1)) (46)

where the subscripto refers to the quantum number of the initial state, @pds the
progressive phase of the adiabatic eigenstate which is given by equation (31).
Inserting equation (46) into equation (8), we obtain the equation of motiod fgr
dAnn
TO = 27&: KnmAmno- (47)

For V(a) = aV, equation (47) is characterized by the kernel

e (£ (@) V£ (@))*
dt Em (a) - En (O‘)

which determines the transition rate from the progressive adiabatic stateiéxjp,, to
exp(—i6, )&, caused by the dynamical symmetry-breaking interactiori-rom equation (48)
we know that the transition kerné&l,,,, is completely determined by the adiabatic eigenstates,
their progressive phases, and the rate of change of the paramefétis means that the
non-elastic behaviour of the system is related to its adiabatic eigenstates. We call this kind
of relation a dynamical correlation between adiabatic and non-adiabatic processes.

The energy of the system is

E(t) = (Yo (O H @) [Yino (D) = D Ao (@ (1), DPEn((@)).  (49)

Ky = exp[_i (em (t) =0, (t))] (48)

SinceE, («(t)) depends on time only throughwhile theA,,,,, have a more complicated time
dependence, equation (49) shows a clear-cut separation of elastic and non-elastic effects. If
quantum transitions are completely neglected, kg, = 0, thenA,,, (1) = A,,,(0) and

E®0) (1) = Z |A,mO(0)|2En(Ol(t)) = E(nO)(Ol(l‘)). (50)

Equation (50) is precisely the expression of the elastic energy. As quantum transitions are
included, equation (47) is not integrabledrspace, and: (¢) is not a function otx(z) only,
sinced, (¢) is a function of bothw andr . Therefore

E(1) = E(a(r), 1) # E(a(1)) (51)

the system responds non-elastically. The above analysis tells us that it is the progressive
phase which is not integrable inspace, making the system respond non-elastically.

The dynamical adiabatic and non-adiabatic correlation can be exploited further, if a
comparison between the equations of motion4gy,, equation (47), and the level dynamical
equations [9] for the adiabatic eigenstates, equation (30), is made as follows: we have
assumed thatH, is integrable and has a complete set of good quantum numbers and
that V breaks the dynamical symmetry éfy. Thus H(«(z)) is non- integrable and the
good quantum numbers dfl, are destroyed by. To study the non-integrable system
with Hamiltonian H («(t)), we employ the unperturbed eigenstaggsas a working basis.
Expandingé, («) in terms ofg,,

i) =Y Bu(@)r (52)
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we obtain from the eigenvalue equation@f«), equation (23), the dynamical equation for
Bnry

dBnr m 14 n
@ _ 5 EnlVIED (53)
do E, — E,
m#n
For numerical calculationg,, in equation (53) is expanded in terms ¢f as shown
in equation (52) so that equation (53) becomes explicitly nonlinear. Wit «(7),

equation (53) can be written as

dB,,
T = ZKntmr (54)
m##n
where the kernet,,,, reads
_da (ElVIE) (55)

Knym = .
d E, —E,

Equation (54) with kernel equation (55) is the basic equation of level dynamics [9].
Comparing equations (47), (48) with equations (54), (55), we find that the structure of
the two equations is similar. The only difference is at the kernels: for the general time-
dependent case, the interaction matrices are calculated by using the progressive adiabatic
states exp-i6, (¢))&,(«(t)), while the progressive phase &xf6,(¢)) is not involved for
the adiabatic case. Because of the absence of the progressive phase equation (54)
is integrable ink-space. In contrast, the presence of the progressive phasg,imakes
equation (47) non-integrable with respectdo It is the progressive phase, which is not
integrable ink-space, that makes the system respond non-elastically. In short, the elasticity
is related to the integrability of the dynamical equatiorwispace, while the non-elasticity
is due to the non-integrability of the dynamical equatiorxispace.

In level dynamics [9] it is shown that if a system, starting from an integrable Hamiltonian
Hy, undergoes an adiabatic symmetry-breaking evolution, the properties of its spectrum
strongly depend on the avoided crossings of the adiabatic levels. During the adiabatic
evolution, if the system has developed only a few avoided level crossings, the kggnel
contains mainly long-range interactions. By summation, it produces a mean field which
yields a smooth deformation of the adiabatic level spectrum. After unfolding [10], the mean
field effect is removed, and the level spectrum shows a regular behaviour. In contrast, during
the course of adiabatic evolution as the system has developed many avoided level crossings,
the kernel,,, will comprise a large number of short-range collisions which in turn produce
enormous local fluctuations in the adiabatic level spectrum and make the spectrum chaotic
with Gaussian orthogonal ensemble (GOE) statistics [10].

Since the kernel<,, and «,, have the same adiabatic energy denominators, the
avoided level crossings play the same role in producing the fluctuations of the solution
of the dynamical equations for both the adiabatic and non-adiabatic cases. From the
dynamical adiabatic and non- adiabatic correlation, we expect that the regular system and
the chaotic system will give different responses to the time-dependent external perturbation:
the response of a regular system will be elastic, while the response of a chaotic system will
show non-elastic (dissipative) behaviour.

3. Computer experiments

In this section, we shall present some numerical results from computer experiments to
illustrate the above general conclusions.



5592 S JWang et al

We employ the su(2) dynamical model which was used previously to study the transition
from regular to irregular quantum motion by means of level dynamics [9]. The Hamiltonian
of the model reads

H(r) = Hop + a(V92 4 yof (56)
where the regular (integrable) pait is a function of the su(2) Cartan operaty;
1 Ji
Ho = 2jsin [:—3 arcsin(—?)] . (57)
J

It has a dynamical symmetry and good quantum numbpersdm. The perturbation which
destroys the dynamical symmetry and the good quantum numbesin be divided into two
parts: the diagonal paft?@ commutes withH, and keeps its dynamical symmetry as well
as the related good quantum number the off-diagonal partV°" breaks the dynamical
symmetry and destroys the good quantum numbeihey read

; J J
ydia — () [/31 cos(&rkl—,()) + B2 cos<2nk2—,°)] (58)
J J
Vol = (U, + 7)) (59)
As shown in [9], when the parameter set assumes the following values,
B =05 Bo=—1.0 ki/j = = ko/j = 28 a=23 (60)

the system becomes chaotic with GOE statistics [10], whilexfer O it is evident that the
system is integrable and regular.
Now we consider the time-dependent case. Let

a =a(t) = ag+ Aa Sinwt (61)

with the last term due to a time-periodic external perturbation exerted on the system.

The time-dependent Sdidinger equation (8) can be solved in the regular basis
of the eigenstates af, . Expand the statey,,,(¢)) evolving from the initial statémo) in
terms of|m),

[Wimo (1)) =) Congm EXP(—i6,, (1)) ) (62)
whered,, (t) of equation (31) reduces to

O (1) = / en(a(1)) dr. (63)
0

Heree, (x(t)) and|m) are the solutions of the following equation:
(Ho+ a()V™®)|m) = €, (a(1))|m) (64)
with

dia |1 . (m
en(a(t)) = (m|Ho+ (@) V7 m) = 2j sm[:—3 arcsm(7>]

+a () (=" [/31 cos(27r %) + B2 cos(Zn ]%ﬂ . (65)

From equations (8) and (62) we obtain the equation of motiorCigy, (1),

% = —i Z Conon (Dt () (m| V" |n) €Xp[=i (6, (1) — 6 (1))] (66)
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Figure 1. Time dependence of the energy"® (r) for w = /2 with mg = 0 (lower part) and
mo = 50 (upper part). Full curvexg = O; broken curveg = 1.0; chain curveiag = 2.3.

which is an analogue of equation (47) but in the unperturbed basis rather than the adiabatic
basis.

To study the effect of the external perturbation on both regular and chaotic systems, the
following quantities are used:

(i) the energy ofy,,,(t) defined as

E"(t) = (YO H @(O) Yo (1)) = Y [Crngnl€n (e ())

+ Z Cron () Congm (Dt (1) (n| V[ m) @XP=i (0,0 (1) — 6,,(1))] (67)
n#m

(ii) the variance of angular momentum defined as usual,

02 () = (Wno (D (Jo = (Wmo ()1 J0| Yo (1)) %1%y (1))
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2
=Y |Cogm () Pm® — (Z |cm0m(r)|2m) (68)

m

(iii) the time evolution of the distribution oV fermions over the eigenstatgs) of the
operator(Hy + a (1) V93, equation (64), under the perturbatiagy)V°™ | equation (59),

Py (6) = [Cugn I With Y |Crgn(®> = N, form > —j. (69)

Before we can study the effect of the external, time-periodic perturbation, we have to specify
appropriate values of the external perturbation stremgthand of the frequencw. Since

we look for distinctive responses of the reguiag = 0) and chaotic(eg = 2.3) systems,

Aa should be large enough to produce a strong effect on the system. On the other hand,
Aa must be small enough in order to avoid a situation where regular and chaotic regimes
overlap. To meet these two conditions we assuxae= 0.5 so that, in view of the above
ap-values,a(t) = ag + Aa Sinwt keeps the distinction between regular and chaotic cases.
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To make an appropriate choice @f we have to consider the intrinsic frequencies of the
system. From [9] we know that the average level spacing of the system under study is
D =~ 1 with a range from 0 to 2.5. Hence the corresponding intrinsic frequencies are in
some interval [02.5] which constitutes a resonance window for the external time-periodic
perturbation. If we choose in this window, sayw < 7/2, both the regular and the
chaotic systems will respond resonantly, and their distinction fades. Figure 1 presents such
a resonant case fav = /2 where the regular and chaotic cases show similar structures
for the energyE ™ (¢). In the following we present numerical results for= 500 obtained

with Aa = 0.5 andw = 7, 4.

Figure 2 shows the energg(r) for mp = 0 and 50 as quantum numbers of the
initial state |mg). While for the regular caséxg = 0) the energy follows closely the
time dependence af(r), its behaviour becomes increasingly irregular as one approaches
the chaotic regimgag = 2.3), and the non-elastic energy deviation increases. Further
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increase ofv (figure 3) results in a low-frequency modulation of thesirbehaviour of the
external perturbation due to the relatively low intrinsic frequencies of the system. Hence
the average of£™9 (¢+) over one period of the external perturbation no longer exhibits
the difference between the regular and chaotic cases. The angular momentum dispersion
(figure 4)o,,,(t) remains almost zero during time evolution for the regular case. For the
chaotic caseg,,,(f) increases steeply with timeand tends to saturate at some non-zero
value after several pronounced oscillations. Finally we consider a system of independent
fermions which initially occupy the 50 lowest orbits:) with energiese,, for j = 500.

These orbits are mixed during time evolution by the non-diagonal coupling terBi(of

The occupation probability ) (r) of these orbits clearly distinguishes between the regular
and chaotic case (figure 5); while fap = 1.0 the initial (rectangular) Fermi distribution

is only slightly smeared out, the effect is much more dramatic for the chaotic case with

oo = 2.3.

4. Summary

The response of a quantum system to a time-dependent, external perturbation has been
studied systematically. As one would expect, the system responds elastically, if the
perturbation preserves the symmetry of the unperturbed system. This is also true for a
symmetry-breaking perturbation in the adiabatic limit. In those two cases the energy strictly
follows the time-dependenceg(?) of the perturbationE (1) = E(a(t)), the system responds
elastically For non-adiabatic evolution the system will in general rezmt-elastically
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Figure 5. Occupation probabilit)P,ﬁ[”O)(t) of orbits |m), for 50 fermions in the same spin state,

for the regular(egp = 1.0) and chaotic(eg = 2.3) cases at time = 104. The dotted curve
indicates the initial (rectangular) distribution.

The detailed behaviour depends on the spectrum of the adiabatic eigenstates of the total
system: if the spectrum is regular, the response is almost elastic, while for chaotic spectrum
the response is inelastic and dissipative. It is this property where the present study of the
response to a time-dependent perturbation connects to the problem of level dynamics of
the adiabatic eigenstates of the autonomous systemawithag independent of. Under
special initial conditions one may find quasi-elasticity as an intermediate case where the
system evolves cyclically withe (T) = E(0), T the period of the perturbation.
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