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Abstract. The response of a quantum system to a time-dependent periodic external field is
investigated in connection with the dynamical symmetry breaking and level dynamics of the
adiabatic states of the system. The main results are as follows. (A) When the periodic external
field preserves the dynamical symmetry of the system, its response is like that of elastic matter.
(B) When the periodic external field breaks the dynamical symmetry, several cases may occur:
(a) in the adiabatic limit, the system still responds elastically; (b) if the initial state is an eigenstate
of the evolution operatorU(T ) for one periodT of the external field, the system evolves in
time cyclically and responds quasi-elastically; (c) if the initial state is not an eigenstate of the
evolution operatorU(T ), the system evolves in time non-cyclically and responds non-elastically.
The detailed non-elastic behaviour depends on the statistical nature of the adiabatic eigenstates
of the system. If the adiabatic spectrum is chaotic, the non-elastic response is expected to be
strongly dissipative. The avoided level crossings of the adiabatic eigenstates play a crucial role
in both producing chaoticity of the adiabatic levels and causing dissipation of the non-elastic
response. The non-elastic role played by the adiabatic progressive phase is also addressed.
Computer experiments are performed for the su(2) dynamical model to illustrate the above
general results.

1. Introduction

The response of a quantum system to a time-dependent external field is of general interest
in many branches of physics, such as solid state physics, atomic and molecular physics, and
nuclear physics. A large variety of interesting phenomena have been found in this context.
Generally, as a time-dependent external field acts on a quantum system, its response may
fall into one of several categories such as elastic, viscous or elastoplastic [1]. In nuclear
physics, as two heavy ions are colliding, a time-dependent mean field results. The dissipative
behaviour of the two nuclei depends on both the time-dependent mean field and the two-body
residual interactions [2]. Intuitively, both the time-dependent mean field and the residual
interactions will destroy the good quantum numbers of individual nucleons and may drive
them to chaotic motion. As the nucleonic motion changes from regular to irregular modes,
energy and angular momentum of the collective motion of the nucleus will dissipate into
single-particle motion. In this paper, we shall use group theoretical methods to study the
mechanism that governs the above diverse phenomena by an investigation of a quantum
system which possesses a dynamical group, i.e. whose Hamiltonian is a function of certain
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Lie group generators. In what follows, we shall show that the response of a quantum system
is closely related to the preserving or breaking of the dynamical symmetry of the system
due to the external field. For simplicity, we assume that the time-dependent external field
is periodic.

2. General formalism

Consider a quantum system whose dynamics is dictated by a time- periodic Hamiltonian,

H(t) = H(α(t)) (1)

where α is a periodic function oft with frequencyω. The time dependence of the
Hamiltonian can be induced by a time-periodic external field,

H(t) = H0+ V (α(t)). (2)

Suppose the dynamical group of the unperturbed HamiltonianH0 is G with {Xν} as its
generators and{C,Ci} as a complete set of commuting operators, usually chosen according
to some group chain [3, 4]. The dynamical symmetry [5, 6]G of H0 means thatH0 is a
function of {C,Ci},

H0 = H0(Xν) = H0(C,Ci) (3)

whereC andCi are the Casimir operators of some group chain

G(C) ⊃ Gi(Ci) (4)

with the property

[C,Ci ] = 0 [Ci, Cj ] = 0. (5)

If G is also the dynamical group ofH(t), thenH(t) can be represented as function of the
group generatorsXν ,

H(t) = H(Xν, α(t)) = H0(C,Ci)+ V (Xν, α(t)). (6)

The time-periodic perturbationV (t) may either preserve or destroy the dynamical symmetry
of the system. Assumeφn and n = {n1, n2, . . . , nl} are eigenstates and eigenvalues of
{C,Ci}. From equation (3) it is evident thatφn are also eigenstates ofH0, namely

H0φn = εn(0)φn. (7)

For the time evolution of the system by the time-dependent Schrödinger equation,

i∂ψ(t)/∂t = H(t)ψ(t) (8)

we consider two cases: (A)V (t) preserves the dynamical symmetry ofH0, i.e. V (t)
preserves the quantum numbers{n1, n2, . . . , nl}; (B) V (t) breaks the dynamical symmetry
of H0, i.e. it destroys the quantum numbers{n1, n2, . . . , nl}.

(A) V(t) preserves the dynamical symmetry

We first prove a theorem which underlies the discussion of this section.
(1) Theorem.The necessary and sufficient condition forV (t) to preserve the dynamical

symmetry ofH0 is thatH(t) assumes the following form,

H(t) = H(C,Ci, α(t)) = H0(C,Ci)+ V (C,Ci, α(t)) (9)

namelyV (t) is also a function of{C,Ci)} only.
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Proof. If H = H(C,Ci, α(t)), then from equation (5) we have

[H(t), C] = 0 [H(t), Ci ] = 0 (10)

which means that{C,Ci} are conserved operators and their quantum numbers{n1, n2, ..nl}
are constant during the time evolution. Conversely, if{C,Ci} are conserved underH(t),
then{C,Ci} andH(t) commute,

[H(t), C] = 0 [H(t), Ci ] = 0 (11)

henceH(t) must be a function of{C,Ci}.

(2) Dynamical behaviour of the system
(i) Adiabatic eigensolutionsφn of H(t),

H(C,Ci, α(t))φn = εn(α)φn (12)

are also eigenstates of{C,Ci}, they form an irreducible representation basis of the group
G,

{C,Ci}φn = {ni}φn. (13)

Thusφn are algebraic-geometric objects of the groupG and independent of the parameter
α,

∂φn

∂α
= 0 (14)

while the energiesεn(α) are dynamical quantities depending onα.
(ii) Time-dependent behaviour. Expand the general solution of the time- dependent

Schr̈odinger equation in terms ofφn,

ψ(t) =
∑
n

bn(t)φn. (15)

Inserting equation (15) into equation (8), one has together with equation (12)

i
dbn
dt
= bnεn(α(t)) (16)

and

bn(t) = bn(0) exp

[
− i

∫ t

0
εn(τ ) dτ

]
. (17)

The energy of the system is

E(t) = 〈ψ(t)|H(t)|ψ(t)〉 =
∑
n

|bn(0)|2εn(α(t)) = E(α(t)) (18)

which means that the system responds elastically to the external fieldV (t). Furthermore,
if ψ(0) = φn, we have a stationary solution,

ψ(t) = φn exp

(
− i

∫ t

0
εn(τ ) dτ

)
= φn exp

(
− i

∫ t

0
〈ψ(τ)|H(τ)|ψ(τ)〉 dτ

)
(19)

which means that the system possesses only a dynamical phase, but no Berry phase [7].
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(B) V(t) breaks the dynamical symmetry

Then, according to the above theorem,V (t) is not a function of{C,Ci} but a function of
{Xν},

V (t) = V (Xν, α(t)) 6= V (C,Ci, α(t)). (20)

Let V (t) be periodic with the periodT = 2π/ω, V (t + T ) = V (t). Without loss of
generality, we assume

V (T ) = V (0) = 0. (21)

The eigensolutions ofH0 andH(α(t)) are

H0φn = εn(0)φn 〈φn|φm〉 = δnm (22)

and

H(α)ξp(α) = Ep(α)ξp(α) 〈ξp|ξq〉 = δpq. (23)

Equation (8) has the formal solution

ψ(t) = U(t)ψ(0) (24)

where the time evolution operator is defined as usual,

U(t) = T̂ exp

(
− i

∫ t

0
H(τ) dτ

)
. (25)

Consider the time evolution operatorU(T ) for one periodT of the external fieldV (t). Its
eigenvalue equation is

U(T )ηk(T ) = exp(−iθk(T ))ηk(T ) (26)

whereθk(T ) is Floquet’s index, and then-period solution reads

ψ(nT ) = [U(T )]nψ(0). (27)

The dynamical evolution can be divided into two major categories: adiabatic evolution and
non-adiabatic evolution.

(1) Adiabatic evolution.If one expands

ψ(t) =
∑
p

ap(t)ξp(α) (28)

the equation of motion forap is

i
dap
dt
= Ep(α(t))ap(t)− i

dα

dt

∑
q

〈
ξp

∣∣∣∣ ∂∂α
∣∣∣∣ ξq〉 aq(t). (29)

In the adiabatic limit whendα
dt → 0, the off-diagonal part in equation (29) can be neglected

so that

i
dap
dt
= Ep(t)ap(t)−

〈
ξp(t)

∣∣∣∣i ∂∂t
∣∣∣∣ ξp(t)〉 ap(t) (30)

which has the adiabatic solution

ap(t) = exp(−iθp(t))ap(0) θp(t) =
∫ t

0

(
Ep(τ)−

〈
ξp

∣∣∣∣i ∂∂τ
∣∣∣∣ ξp〉) dτ. (31)

The energy is

E(t) = 〈ψ(t)|H(t)|ψ(t)〉 =
∑
p

|ap(0)|2Ep(α(t)) = E(α(t)) (32)
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which indicates that in adiabatic evolution, the system responds elastically as in case (A),
equation (18). The adiabatic evolution is of course related to the adiabatic Berry phase [7].

(2) Non-adiabatic evolution [8].
(i) Cyclic (or recurrent) evolution requires the initial state to be an eigenstate ofU(T ),

ψ(0) = ηk. (33)

This leads, according to equations (26), (27), to the recurrent solution

ψ(nT ) = exp(−inθk(T ))ηk. (34)

The cyclic evolution is related to the non-adiabatic Berry phase [8]. For one period the
dynamical phase is

θdk (T ) =
∫ T

0
〈ψk(t)|H(t)|ψk(t)〉 dt (35)

and the Berry phase is

θBk (T ) = −(θk(T )− θdk (T )). (36)

The energy is, by virtue of equations (21), (34),

E(nT ) = 〈ψ(nT )|H(nT )|ψ(nT )〉 = 〈ηk|H0|ηk〉 = E(0). (37)

This indicates that in the cyclic evolution, the energy of the system changes in time within
the periodT and at each cycle the energy returns to its initial value. SinceE(t) is in general
not a function ofα, the response of the system is not really elastic. However, in view of the
energy restoration after each period, one can refer to the system’s response as quasi-elastic.

(ii) For non-cyclic evolution, the initial state is not an eigenstate ofU(T ),

ψ(0) 6= ηk (38)

which leads to a non-cyclic (non-recurrent) solution. Let

ψ(0) =
∑
k

C
(0)
k ηk (39)

then

ψ(nT ) =
∑
m

Dn
0mφm (40)

where from equations (26), (27)

Dn
0m =

∑
k

C
(0)
k dkm exp(−inθk) ηk =

∑
m

dkmφm. (41)

The energy of the system is

E(nT ) = 〈ψ(nT )|H(nT )|ψ(nT )〉 =
∑
m

P0m(nT )εm(0) (42)

where the distribution probabilityP0m is

P0m(nT ) = |Dn
0m|2. (43)

If the system is initially in the ground state ofH0, namely

ψ(0) = φ0 with energyε0(0), (44)

then the system will absorb energy from the external field because

E(nT ) > ε0(0). (45)
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To study the non-elastic behaviour of the system, one has to make a clear-cut separation
of the non-elastic effect from the elastic one. To this end we use the instantaneous adiabatic
eigenstatesξn as a working basis. Let us expand the time-dependent solutionψ(t) in terms
of this basis,

ψn0(t) =
∑
n

Ann0(t) exp(−iθn(t))ξn(α(t)) (46)

where the subscriptn0 refers to the quantum number of the initial state, andθn is the
progressive phase of the adiabatic eigenstate which is given by equation (31).

Inserting equation (46) into equation (8), we obtain the equation of motion forAnn0

dAnn0

dt
=
∑
m6=n

KnmAmn0. (47)

For V (α) = αV , equation (47) is characterized by the kernel

Knm = −dα

dt

〈ξm(α)|V |ξn(α)〉∗
Em(α)− En(α) exp[−i(θm(t)− θn(t))] (48)

which determines the transition rate from the progressive adiabatic state exp(−iθm)ξm to
exp(−iθn)ξn caused by the dynamical symmetry-breaking interactionV . From equation (48)
we know that the transition kernelKnm is completely determined by the adiabatic eigenstates,
their progressive phases, and the rate of change of the parameterα. This means that the
non-elastic behaviour of the system is related to its adiabatic eigenstates. We call this kind
of relation a dynamical correlation between adiabatic and non-adiabatic processes.

The energy of the system is

E(n0)(t) = 〈ψn0(t)|H(α(t))|ψn0(t)〉 =
∑
n

|Ann0(α(t), t)|2En(α(t)). (49)

SinceEn(α(t)) depends on time only throughα while theAnn0 have a more complicated time
dependence, equation (49) shows a clear-cut separation of elastic and non-elastic effects. If
quantum transitions are completely neglected, i.e.Knm = 0, thenAnn0(t) = Ann0(0) and

E(n0)(t) =
∑
n

|Ann0(0)|2En(α(t)) = E(n0)(α(t)). (50)

Equation (50) is precisely the expression of the elastic energy. As quantum transitions are
included, equation (47) is not integrable inα-space, andE(t) is not a function ofα(t) only,
sinceθn(t) is a function of bothα and t . Therefore

E(t) = E(α(t), t) 6= E(α(t)) (51)

the system responds non-elastically. The above analysis tells us that it is the progressive
phase which is not integrable inα-space, making the system respond non-elastically.

The dynamical adiabatic and non-adiabatic correlation can be exploited further, if a
comparison between the equations of motion forAnn0, equation (47), and the level dynamical
equations [9] for the adiabatic eigenstates, equation (30), is made as follows: we have
assumed thatH0 is integrable and has a complete set of good quantum numbers and
that V breaks the dynamical symmetry ofH0. ThusH(α(t)) is non- integrable and the
good quantum numbers ofH0 are destroyed byV . To study the non-integrable system
with HamiltonianH(α(t)), we employ the unperturbed eigenstatesφn as a working basis.
Expandingξn(α) in terms ofφn,

ξn(α) =
∑
r

Bnr(α)φr (52)
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we obtain from the eigenvalue equation ofH(α), equation (23), the dynamical equation for
Bnr ,

dBnr(α)

dα
= −

∑
m6=n

〈ξm|V |ξn〉
Em − En Bmr . (53)

For numerical calculation,ξm in equation (53) is expanded in terms ofφr as shown
in equation (52) so that equation (53) becomes explicitly nonlinear. Withα = α(t),
equation (53) can be written as

dBnr
dt
=
∑
m6=n

κnmBmr (54)

where the kernelκnm reads

κnm = −dα

dt

〈ξm|V |ξn〉
Em − En . (55)

Equation (54) with kernel equation (55) is the basic equation of level dynamics [9].
Comparing equations (47), (48) with equations (54), (55), we find that the structure of
the two equations is similar. The only difference is at the kernels: for the general time-
dependent case, the interaction matrices are calculated by using the progressive adiabatic
states exp(−iθn(t))ξn(α(t)), while the progressive phase exp(−iθn(t)) is not involved for
the adiabatic case. Because of the absence of the progressive phase inκnm, equation (54)
is integrable inα-space. In contrast, the presence of the progressive phase inKnm makes
equation (47) non-integrable with respect toα. It is the progressive phase, which is not
integrable inα-space, that makes the system respond non-elastically. In short, the elasticity
is related to the integrability of the dynamical equation inα-space, while the non-elasticity
is due to the non-integrability of the dynamical equation inα-space.

In level dynamics [9] it is shown that if a system, starting from an integrable Hamiltonian
H0, undergoes an adiabatic symmetry-breaking evolution, the properties of its spectrum
strongly depend on the avoided crossings of the adiabatic levels. During the adiabatic
evolution, if the system has developed only a few avoided level crossings, the kernelκnm
contains mainly long-range interactions. By summation, it produces a mean field which
yields a smooth deformation of the adiabatic level spectrum. After unfolding [10], the mean
field effect is removed, and the level spectrum shows a regular behaviour. In contrast, during
the course of adiabatic evolution as the system has developed many avoided level crossings,
the kernelκnm will comprise a large number of short-range collisions which in turn produce
enormous local fluctuations in the adiabatic level spectrum and make the spectrum chaotic
with Gaussian orthogonal ensemble (GOE) statistics [10].

Since the kernelsKnm and κnm have the same adiabatic energy denominators, the
avoided level crossings play the same role in producing the fluctuations of the solution
of the dynamical equations for both the adiabatic and non-adiabatic cases. From the
dynamical adiabatic and non- adiabatic correlation, we expect that the regular system and
the chaotic system will give different responses to the time-dependent external perturbation:
the response of a regular system will be elastic, while the response of a chaotic system will
show non-elastic (dissipative) behaviour.

3. Computer experiments

In this section, we shall present some numerical results from computer experiments to
illustrate the above general conclusions.
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We employ the su(2) dynamical model which was used previously to study the transition
from regular to irregular quantum motion by means of level dynamics [9]. The Hamiltonian
of the model reads

H(t) = H0+ α(V dia+ V off) (56)

where the regular (integrable) partH0 is a function of the su(2) Cartan operatorJ0,

H0 = 2j sin

[
1

3
arcsin

(
J0

j

)]
. (57)

It has a dynamical symmetry and good quantum numbersj andm. The perturbation which
destroys the dynamical symmetry and the good quantum numberm, can be divided into two
parts: the diagonal partV dia commutes withH0 and keeps its dynamical symmetry as well
as the related good quantum numberm; the off-diagonal partV off breaks the dynamical
symmetry and destroys the good quantum numberm. They read

V dia = (−)J0

[
β1 cos

(
2πk1

J0

j

)
+ β2 cos

(
2πk2

J0

j

)]
(58)

V off = (J+ + J−)/j. (59)

As shown in [9], when the parameter set assumes the following values,

β1 = 0.5 β2 = −1.0 k1/j = 8
500 k2/j = 28

500 α = 2.3 (60)

the system becomes chaotic with GOE statistics [10], while forα = 0 it is evident that the
system is integrable and regular.

Now we consider the time-dependent case. Let

α = α(t) = α0+1α sinωt (61)

with the last term due to a time-periodic external perturbation exerted on the system.
The time-dependent Schrödinger equation (8) can be solved in the regular basis|m〉

of the eigenstates ofJ0 . Expand the state|ψm0(t)〉 evolving from the initial state|m0〉 in
terms of|m〉,

|ψm0(t)〉 =
∑
m

Cm0m exp(−iθm(t))|m〉 (62)

whereθm(t) of equation (31) reduces to

θm(t) =
∫ t

0
εm(α(τ)) dτ. (63)

Hereεm(α(t)) and |m〉 are the solutions of the following equation:

(H0+ α(t)V dia)|m〉 = εm(α(t))|m〉 (64)

with

εm(α(t)) = 〈m|H0+ α(t)V dia|m〉 = 2j sin

[
1

3
arcsin

(
m

j

)]
+α(t)(−1)m

[
β1 cos

(
2π
k1m

j

)
+ β2 cos

(
2π
k2m

j

)]
. (65)

From equations (8) and (62) we obtain the equation of motion forCm0m(t),

dCm0m(t)

dt
= −i

∑
n

Cm0n(t)α(t)〈m|V off |n〉 exp[−i(θn(t)− θm(t))] (66)
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Figure 1. Time dependence of the energyE(m0)(t) for ω = π/2 with m0 = 0 (lower part) and
m0 = 50 (upper part). Full curve:α0 = 0; broken curve:α0 = 1.0; chain curve:α0 = 2.3.

which is an analogue of equation (47) but in the unperturbed basis rather than the adiabatic
basis.

To study the effect of the external perturbation on both regular and chaotic systems, the
following quantities are used:

(i) the energy ofψm0(t) defined as

E(m0)(t) = 〈ψm0(t)|H(α(t))|ψm0(t)〉 =
∑
n

|Cm0n|2εn(α(t))

+
∑
n6=m

C∗m0n
(t)Cm0m(t)α(t)〈n|V off |m〉 exp[−i(θm(t)− θn(t))] (67)

(ii) the variance of angular momentum defined as usual,

σ 2
m0
(t) = 〈ψm0(t)|(J0− 〈ψm0(t)|J0|ψm0(t)〉)2|ψm0(t)〉
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Figure 2. Time dependence of the energyE(m0)(t) for ω = π with m0 = 0 (lower part) and
m0 = 50 (upper part). Full curve:α0 = 0; broken curve:α0 = 1.0; chain curve:α0 = 2.3.

=
∑
m

|Cm0m(t)|2m2−
(∑

m

|Cm0m(t)|2m
)2

(68)

(iii) the time evolution of the distribution ofN fermions over the eigenstates|m〉 of the
operator(H0+ α(t)V dia), equation (64), under the perturbationα(t)V off , equation (59),

P (m0)
m (t) = |Cm0m(t)|2 with

∑
m

|Cm0m(t)|2 = N, for m > −j. (69)

Before we can study the effect of the external, time-periodic perturbation, we have to specify
appropriate values of the external perturbation strength1α and of the frequencyω. Since
we look for distinctive responses of the regular(α0 = 0) and chaotic(α0 = 2.3) systems,
1α should be large enough to produce a strong effect on the system. On the other hand,
1α must be small enough in order to avoid a situation where regular and chaotic regimes
overlap. To meet these two conditions we assume1α = 0.5 so that, in view of the above
α0-values,α(t) = α0 +1α sinωt keeps the distinction between regular and chaotic cases.
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Figure 3. Time dependence of the energyE(m0)(t) for ω = 4π andm0 = 0. Top: α0 = 0;
bottom: α0 = 2.3.

To make an appropriate choice ofω, we have to consider the intrinsic frequencies of the
system. From [9] we know that the average level spacing of the system under study is
D ≈ 1 with a range from 0 to 2.5. Hence the corresponding intrinsic frequencies are in
some interval [0, 2.5] which constitutes a resonance window for the external time-periodic
perturbation. If we chooseω in this window, sayω 6 π/2, both the regular and the
chaotic systems will respond resonantly, and their distinction fades. Figure 1 presents such
a resonant case forω = π/2 where the regular and chaotic cases show similar structures
for the energyE(m0)(t). In the following we present numerical results forj = 500 obtained
with 1α = 0.5 andω = π, 4π .

Figure 2 shows the energyE(m0)(t) for m0 = 0 and 50 as quantum numbers of the
initial state |m0〉. While for the regular case(α0 = 0) the energy follows closely the
time dependence ofα(t), its behaviour becomes increasingly irregular as one approaches
the chaotic regime(α0 = 2.3), and the non-elastic energy deviation increases. Further
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Figure 4. Varianceσ 2
m0
(t) of angular momentum form0 = 0 and 50 withω = π/2 (lower part)

andω = π (upper part). Full curve:α0 = 0; broken curve:α0 = 1.0; chain curve:α0 = 2.3.

increase ofω (figure 3) results in a low-frequency modulation of the sinωt behaviour of the
external perturbation due to the relatively low intrinsic frequencies of the system. Hence
the average ofE(m0)(t) over one period of the external perturbation no longer exhibits
the difference between the regular and chaotic cases. The angular momentum dispersion
(figure 4) σm0(t) remains almost zero during time evolution for the regular case. For the
chaotic case,σm0(t) increases steeply with timet and tends to saturate at some non-zero
value after several pronounced oscillations. Finally we consider a system of independent
fermions which initially occupy the 50 lowest orbits|m〉 with energiesεm for j = 500.
These orbits are mixed during time evolution by the non-diagonal coupling term ofH(t).
The occupation probabilityP (m0)

m (t) of these orbits clearly distinguishes between the regular
and chaotic case (figure 5); while forα0 = 1.0 the initial (rectangular) Fermi distribution
is only slightly smeared out, the effect is much more dramatic for the chaotic case with
α0 = 2.3.

4. Summary

The response of a quantum system to a time-dependent, external perturbation has been
studied systematically. As one would expect, the system responds elastically, if the
perturbation preserves the symmetry of the unperturbed system. This is also true for a
symmetry-breaking perturbation in the adiabatic limit. In those two cases the energy strictly
follows the time-dependenceα(t) of the perturbation,E(t) = E(α(t)), the system responds
elastically. For non-adiabatic evolution the system will in general reactnon-elastically.
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Figure 5. Occupation probabilityP (m0)
m (t) of orbits |m〉, for 50 fermions in the same spin state,

for the regular(α0 = 1.0) and chaotic(α0 = 2.3) cases at timet = 104. The dotted curve
indicates the initial (rectangular) distribution.

The detailed behaviour depends on the spectrum of the adiabatic eigenstates of the total
system: if the spectrum is regular, the response is almost elastic, while for chaotic spectrum
the response is inelastic and dissipative. It is this property where the present study of the
response to a time-dependent perturbation connects to the problem of level dynamics of
the adiabatic eigenstates of the autonomous system withα = α0 independent oft . Under
special initial conditions one may find quasi-elasticity as an intermediate case where the
system evolves cyclically withE(T ) = E(0), T the period of the perturbation.
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